Visibility and Raman spectroscopy of mono and bilayer graphene on crystalline silicon

Emil B. Song,1,a Bob Lian,1 Guangyu Xu,1 Bo Yuan,2 Caifu Zeng,1 Amber Chen,1 Minsheng Wang,1 Sungmin Kim,1 Murong Lang,1 Yi Zhou,1 and Kang L. Wang1

1Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
2Department of Computer Science, University of California, Los Angeles, California 90095, USA

(Received 24 December 2009; accepted 27 January 2010; published online 23 February 2010)

Experimental studies of pristine graphene devices currently rely on the fact that the graphene crystallites can be visible under optical microscopes when the underlying substrate is engineered to exhibit high contrast. Here, we present that graphene can be visualized not only on a dielectric substrate but also on a crystalline Si surface of a silicon-on-insulator (SOI) wafer (SIMOX and Bonded) with thicknesses of Si ~70 nm and buried oxide ~140 nm, using monochromatic illumination. In addition, we have found that Raman spectroscopy shows similar features to standard graphene on SiO2 substrates independent of the polarity of the Si surface. Finally, the Raman spectrum on SOI exhibits a higher intensity compared to that on bulk Si due to the interference enhancement effect of graphene on SOI. Thus, the usage of optical microscopy and Raman spectroscopy for detecting, locating, and characterizing graphene serves as a high throughput method to further study graphene on semiconductor systems and other substrates beyond SiO2/Si. © 2010 American Institute of Physics. [doi:10.1063/1.3323105]

Graphene, due to its outstanding electrical properties, has been considered as a promising candidate for future electronic devices in integrated circuits. For the past few years, extensive studies have been conducted by exfoliating graphene only onto specific dielectrics since the underlying substrates limits graphene’s visibility and characterization methods.5 Certain attempts were made to put graphene on semiconductor substrates in order to examine substrate-induced effects,6,7 the morphology, and flexibility of graphene.8 However, the lack of a high throughput method to detect and characterize graphene on a semiconductor substrate hinders further studies pertinent to graphene/semiconductor junctions, which are compatible with current semiconductor devices. Furthermore, easy access to graphene/semiconductor heterostructures could provide a platform for unprecedented device structures9 and accelerate graphene application for future technology.

Here, we present a method to detect graphene visibly on a silicon-on-insulator (SOI) substrate, and show Raman spectroscopy as an effective characterization tool in identifying MLG and BLG. The graphene samples were prepared by micromechanical cleavage on a SIMOX (Separation by Implanted OXygen) SOI, Bonded SOI, and 320 nm SiO2 wafer. The thicknesses of the Si/SiO2 layers for SIMOX and Bonded SOI are 70 nm/140 nm and 70 nm/145 nm, respectively. An optical microscope with a variable interference filter of FWHM=10 nm was used to locate the MLG and BLG, and micro Raman spectroscopy was used to characterize the graphene samples.

Figure 1 illustrates the optical image depending on different wavelengths of light. Graphene is nearly invisible in the blue and green region of the visible spectrum and only becomes detectable under red wavelengths near 600 nm. The 600 nm light has a penetration depth (δpen=1/αabs) of 1.8 μm in silicon, that allows 96% of the incident light to transmit through the top 70 nm Si layer, and create a resonant condition in the buried oxide (BOX) layer for high contrast. Small circular dimples on the SOI substrates are notice-
Contrast of MLG on SIMOX SOI.

The path difference for layer $\Delta = 0.81911 \, \text{nm}$ decreases the contrast. Image quality from the dimples and domains on SOI also decreases the contrast value extracted using a two-dimensional averaging technique instead of a one-dimensional technique.

The contrast value was extracted using a two-dimensional averaging technique instead of a one-dimensional technique.

FIG. 2. (Color online) Contrast of graphene on SOI depending on wavelength. (a) Four-layer structure of MLG on SOI. (b) Contrast of MLG on SiO$_2$. (c) Contrast of MLG on SIMOX SOI. (d) Contrast of MLG on Bonded SOI. The error bars represent the FWHM=10 nm of the variable interference filter. The experimental values show good agreement with the simulation upon multiplying a constant as shown in each figure.

where $r_i = (n_{i-1} - n_i)/(n_{i-1} + n_i)$ are the reflection coefficients for interfaces between layer i and $i-1$, and $\Delta_j = 4 \pi n_j d_j / \lambda$ is the path difference for layer j. $d_G = 0.34 \, \text{nm}$ (extension of the π-orbital) and $n_G = 2.6 - 1.3i$ was used for the thickness of MLG and the complex refractive index, respectively.

The contrast value was extracted using a two-dimensional averaging technique instead of a one-dimensional line analysis due to the circular dimples and domains. The discrepancies of the extracted contrast values stem from the use of bulk graphite’s optical constant for graphene and ignoring the angle dependent reflection of the conical-shaped light exiting the objective lens. The inferior image quality from the dimples and domains on SOI also decreases the contrast.

Raman spectroscopy of MLG on SIMOX substrates, depending on the polarity of the silicon surface (100), was investigated [Fig. 3(a)]. Measurements were performed at 514 nm with $<2 \, \text{mW}$ ($0.5 \, \text{mW/µm}^2$) incident power to minimize any spectral change from heat. The nonpolar hydrogen terminated surface was prepared by removing the native oxide layer with hydrofluoric acid, immediately followed by exfoliation of natural graphite. The peak position and FWHM of the doubly degenerate G band (Pos $\approx 2680 \, \text{cm}^{-1}$, FWHM $\approx 10 \, \text{cm}^{-1}$) and the double resonant 2D band (Pos $\approx 1580 \, \text{cm}^{-1}$, FWHM $\approx 10 \, \text{cm}^{-1}$) of MLG do not exhibit any noticeable difference between hydrogen (nonpolar) and oxygen terminated (polar) silicon surfaces. Moreover, no considerable change in the peak positions and FWHM was detected in comparison with SiO$_2$ substrates. This implies that the Raman excitations are decoupled with the silicon surface when adhered through mechanical exfoliation, which is not the case for epitaxial graphene that shows stress induced effects originating from the SiC substrate.
Kohn anomaly. In order to detect charge transfer effects arising from the work function difference between graphene $\Phi_{\text{graphene}} \sim 4.5$ eV and the boron doped (5×10^{15} cm$^{-3}$) silicon $\Phi_{\text{Si}} \sim 4.97$ eV, the graphene sample on the H-terminated silicon surface was annealed in H$_2$ (50%)/Ar (50%) at 300 °C for 20 min to improve the graphene/silicon interface. The graphene on SiO$_2$ was also annealed with the same condition for comparison. Fig. 3(c) shows, however, that the Raman spectrum of both MLG on Si and SiO$_2$ blue shifts ($G_{\text{SiO}_2} \rightarrow 1590$ cm$^{-1}$ and $2D_{\text{Si}} \rightarrow 2690$ cm$^{-1}$; $G_{\text{Si}} \rightarrow 1592$ cm$^{-1}$ and $2D_{\text{SiO}_2} \rightarrow 2692$ cm$^{-1}$), which corresponds to a hole doping of approximately 10^{13}/cm2 independent of the substrate.

Two possible reasons for phonon stiffening of MLG on Si are hole transfer from the p-doped silicon substrate and hole doping from the atmospheric adsorbates after thermal treatment. The dominant source for MLG on SiO$_2$, however, is the latter. This makes the origin of stiffening for MLG on Si difficult to differentiate between the two effects.

In summary, high throughput methods such as optical microscopy and Raman spectroscopy can be used for detecting and identifying mono and BLG on crystalline silicon. This will expedite the process to make structures for understanding junction properties of graphene/semiconductors and provide opportunities to engineer hybrid device structures.

The authors would like to thank S. Bedell from IBM and B. Y. Nguyen from SOITEC for providing the SIMOX SOI and Bonded SOI substrates, respectively. This work has been partially supported by Functional Engineered Nano Architectonics (FENA) which is funded through the Focus Center Research Program, and the NSF-IGERT (DGE-0114443) program (E.B.S.).